ipso-Acylation of 5,13-di-*tert*-butyl-8,16-dimethyl[2.2]metacyclophane with acid anhydrides: through-space electronic interaction among the two benzene rings Tomoe Shimizu, Ariun Paudel and Takehiko Yamato*

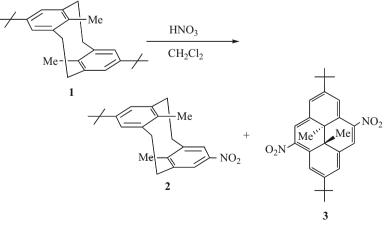
Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga 840-8502, Japan

Acylation of 5,13-di-*tert*-butyl-8,16-dimethyl[2.2]metacyclophane with acid anhydrides led to mono-*ipso*-acylation at the *tert*-butyl group to give 5-acyl-13-*tert*-butyl-8,16-dimethyl[2.2]metacyclophanes, from which the second electrophilic substitution with acid anhydrides can be strongly suppressed because of deactivation of the second aromatic ring by acyl group introduced by the through-space electronic interaction.

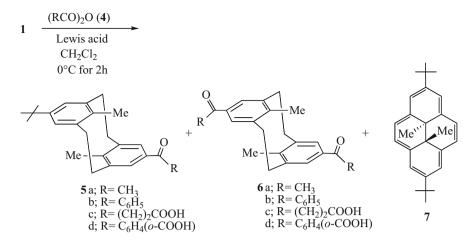
Keywords: cyclophanes, [2.2]metacyclophanes, ipso-acylation, Clemmensen reduction

For many years various research groups have been attracted by the chemistry and spectral properties of the [2.2]MCP skeleton.1-3 Its [2.2]metacyclophane) = ([2.2]MCP conformation, which was elucidated by X-ray measurements,4 is apparently frozen into a chair-like non-planar form. The two halves of the molecule form a stepped system. The benzene rings are not planar, but have a boat conformation, with the result that the molecule avoids the steric interaction of the central carbon atoms C-8 and C-16 and of the attached hydrogen atoms. The C(8)-C(16) distance is 2.689 Å. The increased strain in the molecule 8,16-dimethyl[2.2]MCP as compared with that in the parent hydrocarbon can be seen, in particular, in the distance between C-1 and C-2 (1.573 Å).⁵

Previously, we reported that^{6–8} nitration of 5,13-di-*tert*butyl-8,16-dimethyl[2.2]MCP **1** with fuming HNO₃ afforded 13-*tert*-butyl-5-nitro-8,16-dimethyl[2.2]MCP **2** along with the transannular reaction product, 2,7-di-*tert*-butyl-4,9-dinitro*trans*-10b,10c-dimethyl-10b,10c-dihydropyrene **3**.


Although the replacement of a *tert*-butyl group by a nitro group in electrophilic aromatic substitutions has frequently been described,^{9–16} generally the yields are modest because of the accompanying side reactions.¹⁷ Only in activated compounds are better yields obtained. However, the mechanistic aspects for *ipso*-attack in electrophilic aromatic substitutions having more than two aromatic rings are still not clear in spite of the possibility of through space electronic interactions among the other benzene rings.¹⁸ Thus there is substantial interest in investigating the acylation of the internally substituted [2.2]MCPs, which might afford single mono- and di-acylated products. We report here on the through-space electronic interaction among the two benzene rings during

the acylation of 5,13-di-*tert*-butyl-8,16-dimethyl[2.2]MCP 1 with various acid anhydrides. Further Clemmensen reduction of the acylation products to prepare 8,16-dimethyl[2.2]benzo-napthaleno- and benzoanthracenoMCPs by Friedel–Crafts intramolecular cyclisation was also described.


Results and discussion

When acetylation of 5, 13-di-*tert*-butyl-8, 16-dimethyl[2.2]MCP (1)¹⁹ with acetic anhydride in the presence of TiCl₄ as a catalyst was carried out at 0 °C for 2 h, 5-acetyl-13-*tert*-butyl-8,16-dimethyl[2.2]MCP (**5a**) and 2,7-di-*tert*-butyl-*trans*-10b,10-dimethyl-10b,10c-dihydropyrene (7)²⁰ were obtained in 83% and 17% yield, respectively. Interestingly, acetylation of **1** with acetic anhydride in the presence of AlCl₃–MeNO₂ as a catalyst was carried out at 0 °C for 2 h led to the two-fold *ipso*-acetylation to give 5,13-diacetyl-8,16-dimethyl[2.2]MCP (**6a**) in 90% yield along with the monoacylation product **5a** in 10% yield.

TiCl₄ catalysed acylation of **1** with benzoic anhydride carried out at 0 °C for 2 h afforded 5-benzoyl-13-*tert*-butyl-8,16-dimethyl[2.2]MCP (**5b**) in 95% yield along with a small amount of **7**. A similar reaction was carried out in the presence of AlCl₃–MeNO₂ that led to *ipso*-acylation at just one *tert*-butyl group to give **5b** in quantitative yield. However, attempted further acylation of **1** with benzoic anhydride failed. In spite of increasing the amount of benzoic anhydride and AlCl₃–MeNO₂ or increasing the reaction temperature to 50 °C and prolonging the reaction time, no formation of two-fold *ipso*-acylation product **6b** was observed. Only the mono-*ipso*-acylation product **5b** was obtained in good yields.

Scheme 1

Scheme 2

Similar treatment of 1 with 3.0 equiv. of succinic anhydride or phthalic anhydride in the presence of $AlCl_3$ –MeNO₂ under the same conditions afforded the corresponding mono-acylation product **5c** and **5d** in 90 and 95% yields, respectively. Thus, the number of *ipso*-acylation of 1 was strongly affected by the acid anhydrides and the reaction conditions used.

The present acylation behaviour of [2.2]MCP 1 can be explained by the stability of the cationic intermediates, which could arise from the through-space electronic interaction with the benzene ring located on the opposite side. Thus, a first σ complex intermediate (**A**) would be stabilised by the throughspace electronic intraannular interaction through 8,16-positions with the opposing benzene ring, thus accelerating the reaction.

However, the second electrophilic substitution with acyl group can be strongly suppressed in the intermediate (**B**) because of deactivation of the second aromatic ring by acyl group like nitration of 8,16-dimethyl[2.2]MCP, which only afforded mono-nitration product even in the drastic nitration conditions.⁸ This effect seems to be increased for benzoyl, 3-(carboxyl)propionyl and (2-carboxyl)benzoyl group in comparison with that of acetyl group. Similarly, 5-*tert*-butyl-1,2,3-trimethylbenzene $(8)^{21}$ with excess succinic anhydride in the presence of AlCl₃-MeNO₂ at room temperature only gave a quantitative recovery of the starting compound. Raising the reaction temperature to 50 °C and prolonging the reaction time resulted only the recovery of the starting compound. No formation of the ipso-acylation at the tert-butyl group was observed. In contrast with 8, acylation of [2.2]MCP 1 with excess succinic anhydride in the presence of AlCl₃-MeNO₂ led to *ipso*-acylation only at one of the *tert*-butyl groups to give 5c in good yield. This result seems to indicate that the metacyclophane structure in 1 plays an important role in the present ipso-acylation reaction. The ipsoacylation of 1 is attributed to the highly activated character of the aryl ring and the increased stabilisation of σ -complex intermediate A arising from the through-space electronic. Recently, Cacace et al. reported²² that the intramolecular proton shift, namely, ring-to-ring proton migration in (B-phenylethyl)arenium ions from the higher cationic alkylation rate of 1,2-diphenylethane than that of toluene in the gas-phase. Thus in the present system, σ -complex intermediate A would be stabilised by a through-space electronic interaction through intraannular 8,16-positions

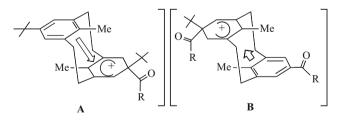
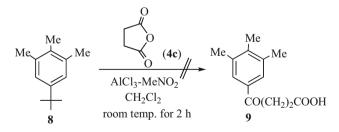
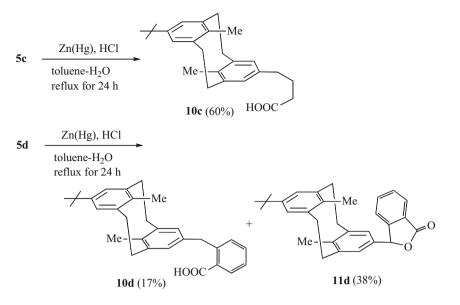



Fig. 1 The through-space electronic interaction of $\sigma\text{-complex}$ intermediates



Scheme 3

Table 1 Lewis acid catalysed acylation of 5,13-di-tert-butyl-8,16-dimethyl[2.2]MCP (1) with acid anhydrides (4)

Run	Reagent (4)	Lewis acid ^a	4/1 (mol mol ⁻¹)	Product/% ^{b,c}	
1	Acetic anhydride (4a)	А	3.0	5a (83) [70] ^d	6a (0)
2	Acetic anhydride (4a)	В	3.0	5a (10) [5]	6a (90) [85]
3	Benzoic anhydride (4b)	А	3.0	5b (95) [90] ^d	6b (0)
4	Benzoic anhydride (4b)	В	3.0	5b (100) [95]	6b (0)
5	Succinic anhydride (4b)	А	1.5	5c (0)	6c (0)
6	Succinic anhydride (4b)	В	1.5	5c (85) [73]	6c (0)
7	Succinic anhydride (4b)	В	3.0	5c (90) [80]	6c (0)
8	Phthalic anhydride (4c)	А	1.5	5d (0)	6d (0)
9	Phthalic anhydride (4c)	В	3.0	5d (95) [89]	6d (0)

^aA: TiCl₄, Catalyst/reagent (4) = 7.0 (mol/mol); B: AlCl₃-MeNO₂, Catalyst/reagent (4) = 3.0 (mol/mol). ^bYields were determined by G.L.C. analyses. ^cIsolated yields are shown in square brackets. ^d2,7-Di-*tert*-butyl-*trans*-10b,10-dimethyl-10b,10c-dihydropyrene (7) was also obtained in 17 and 3% yields, respectively.

Scheme 4

with the opposing benzene ring, therefore accelerating the reaction like the formylation of *tert*-butyl[n.2]MCPs.^{23,24} However, only one *tert*-butyl group is *ipso*-acylated because of deactivation of the second aromatic ring by the acyl group introduced (intermediate **B**).

Clemmensen reduction of **5c** with Zn–Hg afforded the desired **10c** in 60% yield. In contrast, in the case of **5d** the desired product **10d** was obtained only in 17% yield along with 5-*tert*-butyl-13-(3-oxo-1,3-dihydroisobenzofuran-1-yl)-8,16-dimethyl[2.2]metacyclophane **11d** was obtained in 38% yield.

The structure of **11d** was assigned on the basis of elemental analyses and spectral data. The ¹H NMR spectrum of **11d** shows two kinds of methyl protons, each as a singlet and the methyl protons shifted strongly up-field at δ –0.26 and 0.35 ppm in comparison with those of **10d** (δ 0.54 and 0.58 ppm). In contrast, the cyclophane aromatic protons of **11d** are observed as four sets of doublet (J= 1.8 Hz) at much lower fields (δ 7.00, 7.02, 7.24 and 7.45 ppm) than those of **10d** at δ 6.85 and 7.08 ppm as a singlet. The methine proton was also observed at δ 7.32 ppm as a singlet. The above data show that the structure of **11d** is the 8,16-dimethyl[2.2.MCP having the isobenzofuran group at the 13-position in which benzene ring cause one of the methyl protons to the upper field shift at δ –0.26 ppm due to the ring current effect.

We conclude that the *ipso*-acylation reactions of **1** lead to the first-reported direct introduction of one acyl group. The selective *ipso*-acylation of **1** is attributed to the highly activated character of the aryl ring and the increased stabilisation of σ -complex intermediate. Also we have deduced that a first σ -complex intermediate, (β -phenylethyl)arenium ion is stabilised by the through-space electronic interaction with the other benzene ring in acylation like the electrophilic aromatic substitution of MCPs. Further studies on *ipso*acylation and Friedel–Crafts intramolecular cyclisation of **10c** and **10d** to prepare 8,16-dimethyl[2.2]benzonapthalenoand benzoanthracenoMCPs are currently in progress in our laboratory.

Experiment

All melting points are uncorrected. ¹H NMR spectra were recorded at 300 MHz on a Nippon Denshi JEOL FT-300 NMR spectrometer in deuteriochloroform with Me₄Si as an internal reference. IR spectra were measured as KBr pellets on a Nippon Denshi JIR-AQ2OM spectrometer. Mass spectra were obtained on a Nippon Denshi JMS-HX110A ultrahigh performance mass spectrometer at 75 eV using a direct-inlet system. Elemental analyses were performed by Yanaco MT-5.

Materials

The preparations of 5,13-di-*tert*-butyl-8,16-dimethyl[2.2]metacyclophane 1^{19} , and 5-*tert*-butyl-1,2,3-trimethylbenzene 8^{21} have been previously described.

Titanium tetrachloride catalysed acylation of 5,13-di-tert-butyl-8,16dimethyl [2.2]metacyclophane (1); typical procedure

A solution of TiCl₄ (1.2 ml, 10.92 mmol) in CH₂Cl₂ (1 mL) at 0 °C was added to a solution of 5,13-di-*tert*-butyl-8,16-dimethyl[2.2]metacyclophane (1) (181 mg, 0.52 mmol) and acetic anhydride (0.16 mL, 1.56 mmol) in CH₂Cl₂ (4 mL). After the reaction mixture was stirred at 0 °C for 2 h, it was poured into ice-water (10 mL). The organic layer was extracted with CH₂Cl₂ (10 mL × 2). The extract was washed with water (5 mL), dried (Na₂SO₄), and concentrated. The residue was column chromatographed over silica gel with hexane, hexane: benzene 1:1, and benzene as eluent to give 30 mg (17%) of **7** and 144 mg (70%) of **5a**, respectively.

5-Acetyl-13-tert-butyl-8,16-dimethyl[2.2]metacyclophane (5a): Colourless prisms (hexane), m.p. 157–161 °C; v_{max} /cm⁻¹ (KBr) 1665 (C=O); $\delta_{\rm H}$ (CDCl₃) 0.50 (3H, s, *Me*), 0.63 (3H, s, *Me*), 1.30 (9H, s, *tBu*), 2.55 (3H, s, *Me*), 2.73–3.04 (8H, m, *CH*₂), 7.13 (2H, s, Ar*H*) and 7.73 (2H, s, Ar*H*); *m*/z 334 (M⁺) (Found: C, 86.65; H, 8.98. C₂₄H₃₀O (334.51) requires C, 86.18; H, 9.04%).

2,7-Di-tert-butyl-trans-10b,10c-dimethyl-10b,10c-dihydropyrene (7): Deep green prisms (hexane), m.p. 203–204 °C (lit.²⁰ m.p. 203– 204 °C).

Compound **5b** was obtained by the acylation of **1** with benzoic anhydride in the same manner described above. The yields are compiled in Table 1.

5-Benzoyl-13-tert-butyl-8,16-dimethyl[2.2]metacyclophane (**5b**): Colourless prisms (hexane), m.p. 179–182 °C; v_{max} /cm⁻¹ (KBr) 1648 (C=O); $\delta_{\rm H}$ (CDCl₃) 0.58 (3H, s, *Me*), 0.67 (3H, s, *Me*), 1.30 (9H, s, *tBu*), 2.74–3.03 (8H, m, *CH*₂), 7.14 (2H, s, ArH), 7.45–7.78 (5H, m, ArH) and 7.65 (2H, s, ArH); *m*/z 396 (M⁺) (Found: C, 87.74; H, 8.22. C₂₉H₃₂O (396.58) requires C, 87.83; H, 8.13%).

Acylation of 1 with acid anhydrides in the presence of $AlCl_3$ -MeNO₂; typical procedure

To a solution of 1 (1.0 g, 2.87 mmol) and succinic anhydride (432 mg, 4.31 mmol) in CH₂Cl₂ (17 mL) was added a solution of aluminum chloride (1.73 g, 12.9 mmol) in nitromethane (3 mL) at 0°C. After the reaction mixture was stirred at room temperature for 2 h, it was poured into a large amount of water. The organic layer was extracted with diethyl ether (20 mL × 3). The extract was washed with 10% hydrochloric acid (10 mL × 2) and water (10 mL × 2), dried with Na₂SO₄, and evaporated *in vacuo*. The residue was recrystallised from benzene to afford 13-*tert*-butyl-5-(3-carboxylpropionyl)-8,16-dimethyl[2.2]metacyclophane (**5c**) (821 mg, 73%) as *colourless prisms*, m.p. 176–178 °C; v_{max} /cm⁻¹ (KBr) 1712, 1676 (C=O); $\delta_{\rm H}$ (CDCl₃) 0.50 (3H, s, *Me*), 0.63 (3H, s, *Me*), 1.30 (9 H, s, *tBu*), 2.69–2.86 (6H, m, *CH*₂), 2.90–3.07 (4H, m, *CH*₂), 3.27–3.33 (2H, m, *CH*₂), 7.13 (2H, s, A*rH*) and 7.69 (2H, s, A*rH*); *m*/*z* 392 (M⁺) (Found: C, 79.89; H, 8.13. C₂₆H₃₂O₃ (392.56) requires C, 79.56; H, 8.22%).

Acylation of 1 with acetic anhydride carried out as described above afforded 5,13-diacetyl-8,16-dimethyl[2,2]metacyclophane 6a in 85% yield as colourless prisms (hexane), m.p. 284–285 °C; v_{max}/cm⁻¹ (KBr) 1666 (C=O); $\delta_{\rm H}$ (CDCl₃) 0.59 (6H, s, Me), 2.58 (6H, s, Me), 2.79-3.10 (8H, m, CH₂), 7.76 (4H, s, ArH); m/z 320 (M⁺) (Found: C, 82.56; H, 7.56. C₂₂H₂₄O₂ (320.44) requires C, 82.46; H, 7.55%).

Acylation of 1 with phthalic anhydride carried out as described above afforded 13-tert-butyl-5-[(2-carboxyl)benzoyl]-8,16-dimethyl [2.2]metacyclophane 5d in 89% yield as colourless prisms, m.p. 257°C; v_{max}/cm⁻¹ (KBr) 1690, 1649 (C=O); δ_H (CDCl₃) 0.49 (3H, s, Me), 0.57 (3H, s, Me), 1.29 (9H, s, tBu), 2.65–2.78 (4H, m, CH₂), 2.83-2.93 (4H, m, CH₂), 7.10 (2H, s, ArH), 7.27-7.30 (1H, m, ArH), 7.46 (2H, s, ArH), 7.50-7.57 (1H, m, ArH), 7.60-7.68 (1H, m, ArH) and 8.06-8.10 (1 H, m, ArH); m/z 440 (M⁺) (Found: C, 81.67; H, 7.26. C₃₀H₃₂O₃ (440.57) requires C, 81.78; H, 7.32%).

Reduction of 5c with Zn-Hg

To a solution of HgCl₂ (206 mg, 0.76 mmol) in conc. HCl (0.1 mL) and water (3.44 mL) was added zinc powder (2.06 g, 31.5 mmol) and a mixture was stirred for 5 min. at room temperature. A suspension was decantated to leave the residue to which conc. HCl (3.1 mL), water (1.3 mL) was added. To the reaction mixture was added a solution of 5c (500 mg, 1.28 mmol) in toluene (1.7 mL) and refluxed for 6 h. After the fresh conc. HCl (2 mL) was added three times every 6 h, the reaction mixture was cooled to room temperature. The organic layer was extracted with ether (10 mL \times 3). The extract was washed with water (10 mL \times 2), dried with Na₂SO₄, and evaporated in vacuo. The residue was recrystallised from hexanebenzene (1:2) to afford 10c (290 mg, 60%) as colourless prisms, m.p. 150–156 °C; v_{max}/cm^{-1} (KBr) 1700 (C=O); δ_{H} (CDCl₃) 0.56 (3H, s, Me), 0.59 (3H, s, Me), 1.29 (9H, s, tBu), 1.90–1.99 (2H, m, CH₂), 2.35-2.41 (2H, m, CH₂), 2.52-2.58 (2H, m, CH₂), 2.74-2.93 (8H, m, CH₂), 6.92 (2H, s, ArH) and 7.11 (2H, s, ArH); m/z 378 (M⁺) (Found: C, 82.22; H, 9.05. C₂₆H₃₄O₂ (378.56) requires C, 82.49; H, 9.05%).

Reduction of 5d with Zn-Hg

Zinc powder (1.84 g, 28.2 mmol) was added to a solution of HgCl₂ (184 mg, 0.68 mmol) in conc. HCl (0.1 mL) and water (3.1 mL) and the mixture was stirred for 5 min. at room temperature. The suspension was decantated to leave the residue to which conc. HCl (2.8 mL), water (1.2 mL) was added. A solution of 5d (500 mg, 1.14 mmol) in toluene (1.5 mL) was added to the reaction mixture and refluxed for 6 h. After the fresh conc. HCl (2 mL) was added three times every 6 h, the reaction mixture was cooled to room temperature. The organic layer was extracted with ether (10 cm³ \times 3). The extract was washed with water (10 mL \times 2), dried with Na₂SO₄, and evaporated in vacuo. The residue was recrystallised from hexanebenzene (1:2) to afford 10d (83 mg, 17%) as colourless prisms. Chromatography on silica gel (Wako, C-300; 100 g) eluting with hexane-benzene (1:3) afforded 11d (178 mg, 38%) as colourless solid.

Compound **10d** was obtained as prisms [hexane-benzene (1:2)]; m.p. 215 °C; v_{max} /cm⁻¹ (KBr) 1695 (C=O); δ_{H} (CDCl₃) 0.54 (3H, s. Me), 0.58 (3H, s, Me), 1.27 (9H, s, tBu), 2.69–2.88 (8H, m, CH₂), 4.33 (2H, s, CH₂), 6.85 (2H, s, ArH), 7.08 (2H, s, ArH), 7.22 (1H, d, J=7.3 Hz, ArH), 7.31 (1H, t, J=7.3 Hz, ArH), 7.46 (1H, t, J=7.3 Hz, ArH) and 8.05 (1H, d, J = 7.3 Hz, ArH); m/z 426 (M⁺) (Found: C, 84.33; H, 8.05. C₃₀H₃₄O₂ (426.6) requires C, 84.47; H, 8.03%)

Compound **11d** was obtained as prisms [hexane-benzene (1:2)]; m.p. 235–237 °C; v_{max} /cm⁻¹ 1775 (C=O); δ_{H} (CDCl₃) –0.26 (3H, s, Me), 0.35 (3H, s, Me), 1.23 (9H, s, tBu), 2.59-2.85 (8H, m, CH₂), 7.00 (1H, d, J = 1.8 Hz, ArH), 7.02 (1H, d, J = 1.8 Hz, ArH), 7.24 (1H, d, J = 1.8 Hz, ArH), 7.32 (1H, s, CH), 7.35 (1H, t, J = 7.9 Hz, T)Àr*H*), 7.45 (1H, d, *J* = 1.8 Hz, Àr*H*), 7.56 (1H, d, *J* = 7.9 Hz, Ar*H*), 7.74 (1H, t, J = 7.9 Hz, ArH) and 8.41 (1H, d, J = 7.9 Hz, ArH); m/z 424 (M⁺) (Found: C, 84.63; H, 7.75. C₃₀H₃₂O₂ (424.59) requires C, 84.87; H, 7.6%).

Received 14 January 2009; accepted 6 March 2009 Paper 09/0391 doi: 10.3184/030823409X447727 Published online: 20 May 2009

References

- Medium-sized Cyclophanes. part 82: T. Shimizu, K. Hita, A. Paudel, J. Tanaka and T. Yamato, J. Chem. Res., 2009, 246.
- 2 R.W. Griffin, Jr., Chem. Rev., 1963, 63, 45.
- 3 D.J. Cram, Acc. Chem. Res., 1971, 4, 204.
- 4 C.J. Brown, J. Chem. Soc., 1953, 3278.
- 5 P.M. Keehn and S.M. Rosenfield (eds), Cyclophanes, Academic Press, New York, 1983, Vol. 1, Chap. 6, p. 428.
- M. Tashiro, T. Yamato and K. Kobayashi, J. Org. Chem., 1984, 49, 3380. T. Yamato, J. Matsumoto, T. Ando, K. Tokuhisa and M. Tashiro, J. Chem. Res., 1991, (S) 276.
- T. Yamato, H. Kamimura and T. Furukawa, J. Org. Chem., 1997, 62, 7560. 8
- 0 R.B. Moodie and K. Schofield, Acc. Chem. Res., 1976, 9, 297.
- 10 A. Fischer and R. Röderer, Can. J. Chem., 1976, 54, 3978.
- 11
- A. Fischer and K.C. Teo, *Can. J. Chem.*, 1978, **56**, 258.
 A. Fischer and K.C. Teo, *Can. J. Chem.*, 1978, **56**, 1758. 12
- 13 H. Suzuki, Synthesis, 1977, 217.
- 14
- P.C. Myhre and M. Beug, *J. Am. Chem. Soc.*, 1966, **88**, 1568. P.C. Myhre and M. Beug and L.L. James, *J. Am. Chem. Soc.*, 1968, **90**, 15
- 2105 16 P.C. Myhre, M. Beug, K.S. Brown and B. Östman, J. Am. Chem. Soc., 1971, 93, 3452
- 17 W. Verboom, A. Durie, R.J. Egberink, M.Z. Asfari and D.N. Reinhoudt, J. Org. Chem., 1992, **57**, 1313. T. Yamato, H. Kamimura, K. Noda and M. Tashiro, J. Chem. Res. (S),
- 18 1994, 424, (M) 2401.
- 19 M. Tashiro and T. Yamato, J. Org. Chem., 1981, 46, 1543
- 20 M. Tashiro and T. Yamato, J. Am. Chem. Soc., 1982, 104, 3701
- 21 M. Tashiro and T. Yamato, J. Chem. Soc., Perkin Trans. 1, 1979, 176.
- 22 F. Cacace, M.E. Crestoni, S. Fornarini and D. Kuck, J. Am. Chem. Soc., 1993, 115, 1024
- 23 T. Yamato, J. Matsumoto, S. Kabu, Y. Takezaki and M. Tashiro, J. Chem. Res. (S) 1993, 44.
- T. Yamato, K. Maeda, H. Kamimura, K. Noda and M. Tashiro, J. Chem. Res. (S) 1995, 310; (M) 1865. 24